Skip to main content

පන්සිළු සිළ සිඳ යා...

Maestro Nimal Mendis... You will forever be in our hearts as one of my land's best musicians (and as a sensational lyricist as well).
"When did I meet you my love
Was it yesterday today or tomorrow
When did I kiss you my love
Was it yesterday today or tomorrow
Only in time eternal I'll know
This love is it real or is it true
Was it yesterday today or tomorrow
That we met my love me and you
When did I miss you my love
Was it yesterday today or tomorrow
I'll say au revoir my love
For yesterday today or tomorrow"

(lyrics by the late Nimal Mendis)

සත්සර සොමි නද සඳ යටින් සෝ සරතැස් සැඬ ඕඝ මතින් සිඳී ගිය පන්සිළු පහන් සිළුව ඔබයි සහෘදයාණෙනි...

https://www.youtube.com/watch?v=w_i30w72JnY

Comments

Popular posts from this blog

දන්නා සිංහලෙන් ඉංග්‍රිසි ඉගෙන ගනිමු - අතිරේකය 1

මූලික ඉංග්‍රීසි ලිවීම හා කියවීම ඉංග්‍රීසියෙන් ලියන්නේ හා ඉංග්‍රීසියෙන් ලියා ඇති දෙයක් කියවන්නේ කෙසේද?  ඉංග්‍රීසිය ඉගෙනීමට පෙර ඔබට මෙම හැකියාව තිබිය යුතුමය.  එය එතරම් අපහසු දෙයක්ද නොවේ.  ඔබේ උනන්දුව හොඳින් ‍තිබේ නම්, පැය කිහිපයකින් ඔබට මෙම හැකියාව ඇති කර ගත හැකිය.  මුල සිට පියවරෙන් පියවර එය උගන්වන්නම්.   මුලින්ම මිනිසා භාෂාවක් භාවිතා කළේ ශබ්දයෙන් පමණි.  එනම් ලිඛිත භාෂාව ඇති වූයේ පසු කාලයකදීය.  කටින් නිකුත් කරන ශබ්ද කනින් අසා ඔවුන් අදහස් උවමාරු කර ගත්තා.  පසුව ඔවුන්ට වුවමනා වුණා මෙම ශබ්ද කොලයක හෝ වෙනත් දෙයක සටහන් කර ගන්නට.  ඒ සඳහායි අකුරු නිර්මාණය කර ගත්තේ.  එම අකුරු නියෝජනය කරන්නේ ශබ්දයි .  මෙසේ මූලික අකුරු කිහිපයක් ඔවුන් එක එක භාෂාව සඳහා නිර්මාණය කර ගත්තා.  ඉංග්‍රීසියේදී මෙලෙස මූලික අකුරු 26ක් ඇත.   එය ඉංග්‍රීසි හෝඩිය ලෙස හැඳින් වෙනවා. අප ඉගෙන ගත යුත්තේ මෙම අකුරු මඟින් නියෝජනය කෙරෙන ශබ්ද මොනවාද යන්නයි.  එවිට ඔබට ඉංග්‍රීසි ලිවීමට හා කියවීමට හැකි වෙනවා.  ඊට පෙර අප අකුරු 26 දැනගත යුතුයි.  එම අ...

ත්‍රිකෝණමිතිය (trigonometry) - 1

හැඳින්වීම ත්‍රිකෝණමිතිය (trigonometry) යනු ගණිතයේ තිබෙන ඉතාම වැදගත් හා ප්‍රයෝජනවත් කොටසකි . මූලිකවම ත්‍රිකෝණයක් ආශ්‍රයෙන් මෙම ගණිත කර්ම හා සිද්ධාන්ත ගොඩනඟා ඇති නිසයි මෙම නම ඊට ලැබී තිබෙන්නේ (" ත්‍රිකෝණ ආශ්‍රිත මැනීම " යන තේරුම එහි ඇත ). එනිසා පළමුව ත්‍රිකෝණ ගැන කෙටියෙන් සලකා බලමු . ත්‍රිකෝණයක් (triangle) යනු කෝණ තුනක් සහිත සංවෘත ජ්‍යාමිතික රූපයකි . කෝණ ගණනට සමාන පාද ගණනක්ද තිබෙන බැවින් ත්‍රිකෝණයක පාද 3 ක්ද ඇත . ජ්‍යාමිතියේදී සරලතම ( එනම් අඩුම පාද ගණනකින් ඇඳිය හැකි ) සංවෘත තල රූපය වන්නේද ත්‍රිකෝණයයි . ඕනෑම ත්‍රිකෝණයක අභ්‍යන්තර කෝණ තුනෙහි එකතුව අංශක 180 කි . ඕනෑම ත්‍රිකෝණයක එක් අභ්‍යන්තර කෝණයක් තෝරා ගන්න . එම කෝණය සෑදීමට පාද දෙකක් අවශ්‍ය කෙරෙනවා ( කෝණයක් සෑදීමට සරල රේඛා දෙකක් අවශ්‍ය කරනවානෙ ). මෙම පාද බද්ධ පාද (adjacent sides) ලෙස හැඳින්වේ . ත්‍රිකෝණයක පාද 3 න් දෙකක් මේ අනුව බද්ධ පාද ලෙස සලකන විට , ඉතිරි පාදය ( එනම් අදාල කෝණය සෑදීමට හවුල් නොවූ පාදය ) සම්මුඛ පාදය (opposite side) ලෙස හැඳින්වෙනවා . සලකා බලනු ලබන කෝණයට මුහුනලා හෙවත් සම්මුඛව එය පාදය තිබෙන න...

කතාවක් කර පොරක් වන්න...

කෙනෙකුගේ ජීවිතය තුල අඩුම වශයෙන් එක් වතාවක් හෝ කතාවක් පිරිසක් ඉදිරියේ කර තිබෙනවාට කිසිදු සැකයක් නැත. පාසැලේදී බලෙන් හෝ යම් සංගම් සැසියක හෝ රැස්වීමක හෝ එම කතාව සමහරවිට සිදු කර ඇති. පාසලේදී කතා මඟ හැරීමට ටොයිලට් එකේ සැඟවුනු අවස්ථාද මට දැන් සිහිපත් වේ. එහෙත් එදා එසේ කතා මඟ හැරීම ගැන අපරාදේ එහෙම කළේ යැයි අද සිතේ. යහලුවන් ඉදිරියේ "පොර" වෙන්න තිබූ අවස්ථා මඟ හැරුණේ යැයි දුකක් සිතට නැඟේ. ඇත්තටම කතාවක් කිරීම "පොර" කමකි. දක්ෂ කතිකයන්ට සමාජයේ ඉහල වටිනාකමක් හිමි වේ. පාසැලේදී වේවා, මඟුලක් අවමඟුලක් හෝ වෙනත් ඕනෑම සමාජ අවස්ථාවකදී වේවා දේශපාලන වේදිකාව මත වේවා කතාවක් කිරීමේදී පිලිපැදිය යුත්තේ සරල පිලිවෙතකි. එහෙත් එම සරල පිලිවෙත තුල වුවද, තමන්ගේ අනන්‍යතාව රඳවන කතාවක් කිරීමට කාටත් හැකිය. පුද්ගලයාගෙන් පුද්ගලයා වෙනස් වේ. එම වෙනස ප්‍රසිද්ධ කතා (public speaking) තුලද පවත්වාගත හැකිය. මේ ගැන මට ලිපියක් ලියන්නට සිතුනේ මාගේ මිතුරෙකුට ප්‍රසිද්ධ කතාවක් කිරීමට අවශ්‍ය වී, ඒ ගැන මේ ළඟ දවසක අප පැයක් පමණ සිදු කළ සංවාදයක් නිසාය. මා ප්‍රසිද්ධ දේශකයකු නොවුණත් මේ විෂය සම්බන්දයෙන් පාසැල් කාලයේ සිටම පත ...