Skip to main content

ත්‍රිකෝණමිතිය (trigonometry) - 3


0o, 90o, 180o, 270o, 360o කෝණ

මෙම කෝණ 5 විශේෂිත අවස්ථාවන් කිහිපයකි. පළමුව අංශක 0 කෝණය සලකමු. මෙවිට අංශුව පොඩ්ඩක්වත් වෘත්ත පරිධිය ඔස්සේ ගමන් කොට නැත. ඒ කියන්නේ වෘත්ත අරය x අක්ෂය මත සමපාත වී ඇත. (වෘත්ත අරය රතු පාටින් දක්වා ඇත.)



මෙවිට කෝණය 0යි. කර්ණය වෙනස් නොවේ (මොකද කර්ණය යනු හැමවිටම වෘත්ත අරයනෙ). බද්ධ පාදය යනු x අක්ෂය දිගේ පවතින දුර නිසා, එය දැන් අරයට සමාන වී ඇත (අරය හා බද්ධ පාදය සමපාත වී තිබෙන නිසා). එහෙත් දැන් සම්මුඛ පාදයේ දිග ශූන්‍යයි. එනම් ඇත්තටම සම්මුඛ පාදයක් ඇත්තෙත් නැත. ඒ කියන්නේ සත්‍ය ලෙසම මෙතැන ත්‍රිකෝණයක්ද නැත. එහෙත් අනුපාත ගණනය කිරීමට එය ගැටලුවක් ඇති කරන්නේ නැහැ මොකද අප මූලිකව බලන්නේ දැන් වෘත්තයයි. මෙම කුඩා විස්තරය තුළ අප සොයා ගත් කරුණු මත අනුපාත සොයමු.

සයින්(0) = සම්මුඛ පාදය/කර්ණය = 0/r = 0 වේ.
කොස්(0) = බද්ධ පාදය/කර්ණය = r/r = 1 වේ.
ටෑන්(0) = සම්මුඛ පාදය/බද්ධ පාදය = 0/r = 0 වේ.

කොසෙක්(0) = කර්ණය/සම්මුඛ පාදය = r/0 = අනන්තය වේ.
සෙක්(0) = කර්ණය/බද්ධ පාදය = r/r = 1 වේ.
කොට්(0) = බද්ධ පාදය/සම්මුඛ පාදය = r/0 = අනන්තය වේ.

මතකයට
ඕනෑම ලොකු කුඩා සංඛ්‍යාවක් 0න් බෙදන විට, පිළිතුර ලෙස ලැබෙන්නේ සිතාගත නොහැකි තරමේ විශාල අගයකි. මෙම සිතාගත නොහැකි අතිදැවැන්ත අගය "අනන්තය" (infinity) ලෙසයි හැඳින්වෙන්නේ. අනන්තය යනු ඇත්තටම නිශ්චිත අගයක් නොවන බව මින් පැහැදිලි වෙනවා නේද? අනන්තය ධන හෝ ඍණ විය හැකියි. එනම්, ධන සංඛ්‍යාවලින් හෙවත් සංඛ්‍යා රේඛාවේ ධන පැත්ත දිගේ යන විට ධන අනන්තය ලැබේ. එලෙසම ඍණ අනන්තයද පවතී.

තවද, ඕනෑම ලොකු කුඩා සංඛ්‍යාවක් අනන්තයෙන් බෙදූ විට, පිළිතුර ලෙස ලැබෙන්නේ ශූන්‍ය හෙවත් 0 වේ. මෙවිට බෙදනු ලබන්නේ ධන හෝ ඍණ අනන්තයෙන් විය හැකියි. 0ට ධන ඍණ භේදයක් නැහැනෙ.

ඇත්තටම ඉහත ආකාරයට කොසෙක්, සෙක්, කොට් වෙන වෙනම රූපය ආශ්‍රයෙන්ම ගණනය කිරීමට අවශ්‍ය නැත. සයින්, කොස්, ටෑන් යන මූලික අනුපාත 3 ආශ්‍රයෙන්ම ඒවා ගණනය කළ හැකියි. මේ ක්‍රමයෙන් පහත ආකාරයට ඒවා ගණනය කළ හැකියි නේද?

කොසෙක්(0) = 1/සයින්(0) = 1/0 = අනන්තය
සෙක්(0) = 1/කොස්(0) = 1/1 = 1
කොට්(0) = 1/ටෑන්(0) = 1/0 = අනන්තය

දැන් අංශක 90 කෝණය ගැන බලමු. මෙවිට සම්මුඛ පාදය හා කර්ණය එකිනෙකට සමපාත වන අතර, බද්ධ පාදය ශූන්‍ය වේ. මෙම දත්ත මත අනුපාත සාදමු.



සයින්(90) = r/r = 1 වේ.
කොස්(90) = 0/r = 0 වේ.
ටෑන්(90) = r/0 = අනන්තය වේ.

කොසෙක්(90) = 1/සයින්(90) = 1/1 = 1 වේ.
සෙක්(90) = 1/කොස්(90) = 1/0 = අනන්තය වේ.
කොට්(90) = 1/ටෑන්(90) = 1/අනන්තය = 0 වේ.

දැන් බලමු අංශක 180 කෝණය. මෙවිට, බද්ධ පාදය හා අරය සමපාත වේ. අරය යනු හැමවිටම ධන අගයකි (ඍණ අගයක් සහිත අරයක් වෘත්තයක තිබිය නොහැකියිනෙ). එහෙත් දැන් බද්ධ පාදය ගැන එසේ සිතිය නොහැකියි. බද්ධ පාදය දැන් තිබෙන්නේ x අක්ෂය මත වුවත්, එය තිබෙන්නේ ඍණ කොටසේය. ඒ කියන්නේ බද්ධ පාදයේ අගය ඍණ වේ. තවද, සම්මුඛ පාදය ශූන්‍ය වේ.



සයින්(180) = 0/r = 0 වේ.
කොස්(180) = -r/r = -1 වේ.
ටෑන්(180) = 0/-r = 0 වේ.

කොසෙක්(180) = 1/0 = අනන්තය වේ.
සෙක්(180) = 1/-1 = -1 වේ.
කොට්(180) = 1/0 = අනන්තය වේ.

අංශක 270 කෝණය බලමු. මෙවිට සම්මුඛ පාදය හා අරය සමපාත වී ඇත. එහෙත් සම්මුඛ පාදය පිහිටන්නේ y අක්ෂයේ ඍණ දිශාවේ බැවින් සම්මුඛ පාදයේ අගය ඍණ ලෙස සැලකිය යුතුය. බද්ධ පාදය 0 වේ.




සයින්(270) = -r/r = -1 වේ.
කොස්(270) = 0/r = 0 වේ.
ටෑන්(270) = -r/0 = ඍණ අනන්තය වේ.

කොසෙක්(270) = 1/-1 = -1 වේ.
සෙක්(270) = 1/0 = අනන්තය වේ.
කොට්(270) = 1/ඍණ අනන්තය = 0 වේ.

අංශක 360 කෝණය ගැන අමුතුවෙන් සලකා බැලීමට දෙයක් නැත. ඊට හේතුව අංශක 360 යනු අංශක 0 ම තමයි. එනම් යම් අංශුවක් අංශක 0 සිටින විටත් අංශක 360හි සිටින විටත්, එම අවස්ථා දෙක එකිනෙකට සමපාතව පවතිනවා. එනිසා අංශක 0දී සලකා බැලූ කාරණා සියල්ල මීට අදාල වන අතර, අංශක 0දී ලැබුණු අගයන්මයි අංශක 360 සඳහාත් පවතින්නේ.

දැන් ඉහත ප්‍රතිඵල සියල්ල පහත ආකාරයට වගුවක සාරාංශගත කළ හැකිය.



0o 90o 180o 270o 360o
sin
0
1
0
-1
0
cos
1
0
-1
0
1
tan
0
infinity
0
-infinity
0
csc
infinity
1
infinity
-1
infinity
sec
1
infinity
-1
infinity
1
cot
infinity
0
infinity
0
infinity

30o, 45o, 60o කෝණ

මෙම කෝණ සඳහා ත්‍රිකෝණමිතික අනුපාත අගයන් සරල ජ්‍යාමිතිය යොදාගෙන සෙවිය හැකියි. පළමුවෙන්ම අංශක 45 කෝණය බලමු. ඒ සඳහා පහත රූපය සලකන්න.



මෙහි B කෝණය ගමු. මෙම ත්‍රිකෝණය සඳහා පයිතගරස් ප්‍රමේයය දැමූ විට, BC2 = AB2+AC2 වේ. එහෙත් AB = AC ද වේ (සමද්විපාද ත්‍රිකෝණයේ සමාන පාද දෙක). එවිට, BC2 = AC2 + AC2 = 2AC2 වේ. තවද, BC2 = AB2 + AB2 = 2AB2 ලෙසද එය ලිවිය හැකියි. ඒ අනුව 45 කෝණය සඳහා පහත ආකාරයට අනුපාත ගණනය කරමු.




 
අංශක 30 හා 60 කෝණ සඳහා පහත රූපය සලකමු. මුලින්ම ABC නම් ත්‍රිකෝණය සලකන්න. එහි අංශක 30 ක හා 60 ක කෝණ ඇත. දැන් A ශීර්ෂයේ සිට BC පාදය තෙක් AD නම් රේඛාවක් නිර්මාණය කරන්න AC දිගට AD සමාන වන පරිදි. මෙම AD දිග a ලෙසද ගමු. එවිට ACD ත්‍රිකෝණය ඉබේම සමපාද ත්‍රිකෝණයක් බවට පත් වේ මොකද කෝණ 3ම සමාන නිසා (හෙවත් පාද 3ම සමාන නිසා). මෙවිට ADB කෝණය අංශක 120ක් වේ (180 – 60 = 120 නිසා). දැනටමත් B කෝණය (හෙවත් ABC කෝණය) 30 නිසා, ඉබේම BAD කෝණයත් අංශක 30ක් බවට පත් වේ. ඒ කියන්නේ ADB ත්‍රිකෝණය සමද්විපාද ත්‍රිකෝණයකි. එහි BD පාදය හා AD පාදය සමානය. එනිසා BD = a වේ. (AC = CD = AD = BD = a වේ.) එවිට, BC = 2a = 2AC වේ. තවද, BC2 = AC2+AB2 → (2a)2 = a2 + AB2 → AB2 = 4a2 – a2 = 3a2 වේ.



දැන් අපට හැකියි මෙම දත්ත ඔස්සේ අනුපාත සියල්ල සොයන්න.


 
ඉහත ගණනය කිරීම් බලන විට, සයින්(30) = කොස්(60) හා සයින්(60) = කොස්(30) බව පේනවා නේද? මූලික අනුපාත 3න් අනෙක් අනුපාත 3හි අගයනුත් සෙවිය හැකියිනෙ. මේ සියලු දත්ත පහත වගුවේ සාරාංශගත කර ඇත. අංශක 0, 30, 45, 60, 90, 180, 270 කෝණවල සයින්, කොස්, ටෑන් අගයන් මතක තබා ගැනීමට වටිනවා. (trigonometry ...)



30o 45o 60o
sin
1/2
1/2
3/2
cos
3/2
1/√2
1/2
tan
1/√3
1
3
csc
2
2
2/√3
sec
2/√3
2
2
cot
3
1
1/√3

Comments

Popular posts from this blog

දන්නා සිංහලෙන් ඉංග්‍රිසි ඉගෙන ගනිමු - පාඩම 1

මෙම පොත (පාඩම් මාලාව) පරිශීලනය කිරීමට ඔබට එදිනෙදා සිංහල භාෂාව භාවිතා කිරීමේ හැකියාව හා සාමාන්‍ය බුද්ධිය පමණක් තිබීම අවම සුදුසුකම ලෙස මා සලකනවා.  තවද, ඇසෙන පරිදි ඉංග්‍රීසි අකුරින් ලිවීමට හැකිවීම හා ඉංග්‍රීසියෙන් ලියා ඇති දෙයක් කියවීමට හැකි නම්, ඔබට මෙතැන් සිට මෙම පාඩම් මාලාව කියවා ඉගෙන ගත හැකිය.  ඔබට එසේ ඉංග්‍රීසි කියවීම හා ලිවීම ගැන දැනීමක් දැනටමත් නොමැත්තේ නම්, කරුණාකර මෙ‍ම පොතෙහි “අතිරේකය - 1 ”  බලා පළමුව එම හැකියාව ඇති කරගන්න.  තවද, හැකි පමණ ඉංග්‍රීසි වචනද පාඩම් කරගන්න. ඔබ හිතවතෙකුගේ නිවසකට හෝ වෙනත් පිටස්තර තැනකට යන විටෙක හැසිරෙන්නේ ඔබට අවශ්‍ය විදියටම නෙමේ නේද?  එනම්, පිට නිවසකට ගිය විට අහවල් පුටුව තිබෙන තැන හරි නැහැ, අහවල් එක මෙහෙම තිබෙන්නට ඕනෑ ආදී ලෙස ඔවුනට පවසන්නේ නැහැ, මොකද අප සිටින්නේ අනුන්ගේ තැනක නිසා.  එලෙසම, ඉංග්‍රීසි භාෂාව යනු සිංහල නොවේ.  ඔබ කැමැති වුවත් නැතත් ඉංග්‍රීසි ඉගෙනීමේදීද අප ඉංග්‍රීසි ව්‍යාකරණ රීති හා රටා එපරිද්දෙන්ම උගත යුතුය.  එනම්, සෑම සිංහල වගන්ති රටාවක්ම ඉංග්‍රීසියට ඔබ්බන්නට නොව, ඉංග්‍රීසියේ ඇති රටා ඔබ දන්නා සිංහල භාෂාව තුළින් ඉගෙනීමට උත්සහ කළ යුතුය. 

කතාවක් කර පොරක් වන්න...

කෙනෙකුගේ ජීවිතය තුල අඩුම වශයෙන් එක් වතාවක් හෝ කතාවක් පිරිසක් ඉදිරියේ කර තිබෙනවාට කිසිදු සැකයක් නැත. පාසැලේදී බලෙන් හෝ යම් සංගම් සැසියක හෝ රැස්වීමක හෝ එම කතාව සමහරවිට සිදු කර ඇති. පාසලේදී කතා මඟ හැරීමට ටොයිලට් එකේ සැඟවුනු අවස්ථාද මට දැන් සිහිපත් වේ. එහෙත් එදා එසේ කතා මඟ හැරීම ගැන අපරාදේ එහෙම කළේ යැයි අද සිතේ. යහලුවන් ඉදිරියේ "පොර" වෙන්න තිබූ අවස්ථා මඟ හැරුණේ යැයි දුකක් සිතට නැඟේ. ඇත්තටම කතාවක් කිරීම "පොර" කමකි. දක්ෂ කතිකයන්ට සමාජයේ ඉහල වටිනාකමක් හිමි වේ. පාසැලේදී වේවා, මඟුලක් අවමඟුලක් හෝ වෙනත් ඕනෑම සමාජ අවස්ථාවකදී වේවා දේශපාලන වේදිකාව මත වේවා කතාවක් කිරීමේදී පිලිපැදිය යුත්තේ සරල පිලිවෙතකි. එහෙත් එම සරල පිලිවෙත තුල වුවද, තමන්ගේ අනන්‍යතාව රඳවන කතාවක් කිරීමට කාටත් හැකිය. පුද්ගලයාගෙන් පුද්ගලයා වෙනස් වේ. එම වෙනස ප්‍රසිද්ධ කතා (public speaking) තුලද පවත්වාගත හැකිය. මේ ගැන මට ලිපියක් ලියන්නට සිතුනේ මාගේ මිතුරෙකුට ප්‍රසිද්ධ කතාවක් කිරීමට අවශ්‍ය වී, ඒ ගැන මේ ළඟ දවසක අප පැයක් පමණ සිදු කළ සංවාදයක් නිසාය. මා ප්‍රසිද්ධ දේශකයකු නොවුණත් මේ විෂය සම්බන්දයෙන් පාසැල් කාලයේ සිටම පත

දන්නා සිංහලෙන් ඉංග්‍රිසි ඉගෙන ගනිමු - අතිරේකය 1

මූලික ඉංග්‍රීසි ලිවීම හා කියවීම ඉංග්‍රීසියෙන් ලියන්නේ හා ඉංග්‍රීසියෙන් ලියා ඇති දෙයක් කියවන්නේ කෙසේද?  ඉංග්‍රීසිය ඉගෙනීමට පෙර ඔබට මෙම හැකියාව තිබිය යුතුමය.  එය එතරම් අපහසු දෙයක්ද නොවේ.  ඔබේ උනන්දුව හොඳින් ‍තිබේ නම්, පැය කිහිපයකින් ඔබට මෙම හැකියාව ඇති කර ගත හැකිය.  මුල සිට පියවරෙන් පියවර එය උගන්වන්නම්.   මුලින්ම මිනිසා භාෂාවක් භාවිතා කළේ ශබ්දයෙන් පමණි.  එනම් ලිඛිත භාෂාව ඇති වූයේ පසු කාලයකදීය.  කටින් නිකුත් කරන ශබ්ද කනින් අසා ඔවුන් අදහස් උවමාරු කර ගත්තා.  පසුව ඔවුන්ට වුවමනා වුණා මෙම ශබ්ද කොලයක හෝ වෙනත් දෙයක සටහන් කර ගන්නට.  ඒ සඳහායි අකුරු නිර්මාණය කර ගත්තේ.  එම අකුරු නියෝජනය කරන්නේ ශබ්දයි .  මෙසේ මූලික අකුරු කිහිපයක් ඔවුන් එක එක භාෂාව සඳහා නිර්මාණය කර ගත්තා.  ඉංග්‍රීසියේදී මෙලෙස මූලික අකුරු 26ක් ඇත.   එය ඉංග්‍රීසි හෝඩිය ලෙස හැඳින් වෙනවා. අප ඉගෙන ගත යුත්තේ මෙම අකුරු මඟින් නියෝජනය කෙරෙන ශබ්ද මොනවාද යන්නයි.  එවිට ඔබට ඉංග්‍රීසි ලිවීමට හා කියවීමට හැකි වෙනවා.  ඊට පෙර අප අකුරු 26 දැනගත යුතුයි.  එම අකුරු 26 පහත දක්වා ඇත.  ඉංග්‍රීසියේදී සෑම අකුරක්ම “සිම්පල්” හා “කැපිටල්” ලෙස දෙයාකාර

දෛශික (vectors) - 1

එදිනෙදා ජීවිතයේදිත් විද්‍යාවේදිත් අපට විවිධාකාරයේ අගයන් සමඟ කටයුතු කිරීමට සිදු වෙනවා . ඉන් සමහරක් නිකංම සංඛ්‍යාවකින් ප්‍රකාශ කළ හැකි අගයන්ය . අඹ ගෙඩි 4 ක් , ළමයි 6 දෙනෙක් ආදී ලෙස ඒවා ප්‍රකාශ කළ හැකියි . තවත් සමහර අවස්ථාවලදී නිකංම අගයකින් / සංඛ්‍යාවකින් පමණක් ප්‍රකාශ කළ නොහැකි දේවල් / රාශි (quantity) හමු වේ . මෙවිට “මීටර්” , “ තත්පර” , “ කිලෝග්‍රෑම්” වැනි යම් ඒකකයක් (unit) සමඟ එම අගයන් පැවසිය යුතුය ; නැතිනම් ප්‍රකාශ කරන අදහස නිශ්චිත නොවේ . උදාහරණයක් ලෙස , “ මං 5 කින් එන්නම්” යැයි කී විට , එම 5 යනු තත්පරද , පැයද , දවස්ද , අවුරුදුද ආදි ලෙස නිශ්චිත නොවේ . මේ දෙවර්ගයේම අගයන් අදිශ (scalar) ලෙස හැඳින්වේ . අදිශයක් හෙවත් අදිශ රාශියක් යනු විශාලත්වයක් පමණක් ඇති දිශාවක් නැති අගයන්ය . ඔබේ වයස කියන විට , “ උතුරට 24 යි , නැගෙනහිරට 16 යි” කියා කියන්නේ නැහැනෙ මොකද දිශාව යන සාධකය / කාරණය වයස නමැති රාශියට වැදගත්කමක් නැත . එහෙත් සමහර අවස්ථා තිබෙනවා අගයක් / විශාලත්වයක් (magnitude) මෙන්ම දිශාවක්ද (direction) පැවසීමට සිදු වන . මෙවැනි රාශි දෛශික (vector) ලෙස හැඳින්වේ . උදාහරණයක් ලෙස , ඔබ යම් “බලයක්

දැනගත යුතු ඉංග්‍රිසි වචන -1

ඉංග්‍රිසි බස ඉගැනීමේදී වචන කොපමණ උගත යුතුද, එම වචන මොනවාදැයි බොහෝ දෙනෙකුට මතුවන ගැටලුවක් වන අතර, බොහෝ දෙනා ඊට විවිධ පිලිතුරුද සපයා ඇත. මේ ගැන හොඳින් පරීක්ෂණය කර ඇමරිකානු ආයතනයක් විසින් වචන 5000ක ලැයිස්තුවක් ඉදිරිපත් කර ඇත. එම ලැයිස්තුව මා කෙටස් දෙකකට (දිගු වැඩි නිසා) සිංහල තේරුම්ද සහිතව ඉදිරිපත් කර ඇත. (මේවා සැකසුවත් සෝදුපත් බලා නැති නිසා සුලු සුලු දෝෂ සමහරවිට තිබිය හැකිය). පහත ලැයිස්තුවේ වචන 2500ක් ඇත.    Word    තේරුම        be    ඉන්නවා    and    හා    of    ගේ    in    තුල    to    ට    have    තියෙනවා    to    ට    it    ඒක, ඌ    I    මම    that    ... කියලා, ඒ/අර, ඒක/අරක    for    සඳහා    you    ඔබ, ඔබලා    he    ඔහු    with    සමඟ    on    මත    do    කරනවා, "මෙව්ව කරනවා"    say    කියනවා    this    මේ, මේක    they    උන්, ඒවා, ඒගොල්ලෝ    at    දෙස, අසල    but    නමුත්    we    අපි    his    ඔහුගේ    from    සිට, ගෙන්    not    නැහැ    by    විසින්, මඟින්    she    ඇය    or    හෝ, හෙවත්    as    විට, නිසා, වශයෙන්    what    මොකක්ද,