Skip to main content

ත්‍රිකෝණමිතිය (trigonometry) - 3


0o, 90o, 180o, 270o, 360o කෝණ

මෙම කෝණ 5 විශේෂිත අවස්ථාවන් කිහිපයකි. පළමුව අංශක 0 කෝණය සලකමු. මෙවිට අංශුව පොඩ්ඩක්වත් වෘත්ත පරිධිය ඔස්සේ ගමන් කොට නැත. ඒ කියන්නේ වෘත්ත අරය x අක්ෂය මත සමපාත වී ඇත. (වෘත්ත අරය රතු පාටින් දක්වා ඇත.)



මෙවිට කෝණය 0යි. කර්ණය වෙනස් නොවේ (මොකද කර්ණය යනු හැමවිටම වෘත්ත අරයනෙ). බද්ධ පාදය යනු x අක්ෂය දිගේ පවතින දුර නිසා, එය දැන් අරයට සමාන වී ඇත (අරය හා බද්ධ පාදය සමපාත වී තිබෙන නිසා). එහෙත් දැන් සම්මුඛ පාදයේ දිග ශූන්‍යයි. එනම් ඇත්තටම සම්මුඛ පාදයක් ඇත්තෙත් නැත. ඒ කියන්නේ සත්‍ය ලෙසම මෙතැන ත්‍රිකෝණයක්ද නැත. එහෙත් අනුපාත ගණනය කිරීමට එය ගැටලුවක් ඇති කරන්නේ නැහැ මොකද අප මූලිකව බලන්නේ දැන් වෘත්තයයි. මෙම කුඩා විස්තරය තුළ අප සොයා ගත් කරුණු මත අනුපාත සොයමු.

සයින්(0) = සම්මුඛ පාදය/කර්ණය = 0/r = 0 වේ.
කොස්(0) = බද්ධ පාදය/කර්ණය = r/r = 1 වේ.
ටෑන්(0) = සම්මුඛ පාදය/බද්ධ පාදය = 0/r = 0 වේ.

කොසෙක්(0) = කර්ණය/සම්මුඛ පාදය = r/0 = අනන්තය වේ.
සෙක්(0) = කර්ණය/බද්ධ පාදය = r/r = 1 වේ.
කොට්(0) = බද්ධ පාදය/සම්මුඛ පාදය = r/0 = අනන්තය වේ.

මතකයට
ඕනෑම ලොකු කුඩා සංඛ්‍යාවක් 0න් බෙදන විට, පිළිතුර ලෙස ලැබෙන්නේ සිතාගත නොහැකි තරමේ විශාල අගයකි. මෙම සිතාගත නොහැකි අතිදැවැන්ත අගය "අනන්තය" (infinity) ලෙසයි හැඳින්වෙන්නේ. අනන්තය යනු ඇත්තටම නිශ්චිත අගයක් නොවන බව මින් පැහැදිලි වෙනවා නේද? අනන්තය ධන හෝ ඍණ විය හැකියි. එනම්, ධන සංඛ්‍යාවලින් හෙවත් සංඛ්‍යා රේඛාවේ ධන පැත්ත දිගේ යන විට ධන අනන්තය ලැබේ. එලෙසම ඍණ අනන්තයද පවතී.

තවද, ඕනෑම ලොකු කුඩා සංඛ්‍යාවක් අනන්තයෙන් බෙදූ විට, පිළිතුර ලෙස ලැබෙන්නේ ශූන්‍ය හෙවත් 0 වේ. මෙවිට බෙදනු ලබන්නේ ධන හෝ ඍණ අනන්තයෙන් විය හැකියි. 0ට ධන ඍණ භේදයක් නැහැනෙ.

ඇත්තටම ඉහත ආකාරයට කොසෙක්, සෙක්, කොට් වෙන වෙනම රූපය ආශ්‍රයෙන්ම ගණනය කිරීමට අවශ්‍ය නැත. සයින්, කොස්, ටෑන් යන මූලික අනුපාත 3 ආශ්‍රයෙන්ම ඒවා ගණනය කළ හැකියි. මේ ක්‍රමයෙන් පහත ආකාරයට ඒවා ගණනය කළ හැකියි නේද?

කොසෙක්(0) = 1/සයින්(0) = 1/0 = අනන්තය
සෙක්(0) = 1/කොස්(0) = 1/1 = 1
කොට්(0) = 1/ටෑන්(0) = 1/0 = අනන්තය

දැන් අංශක 90 කෝණය ගැන බලමු. මෙවිට සම්මුඛ පාදය හා කර්ණය එකිනෙකට සමපාත වන අතර, බද්ධ පාදය ශූන්‍ය වේ. මෙම දත්ත මත අනුපාත සාදමු.



සයින්(90) = r/r = 1 වේ.
කොස්(90) = 0/r = 0 වේ.
ටෑන්(90) = r/0 = අනන්තය වේ.

කොසෙක්(90) = 1/සයින්(90) = 1/1 = 1 වේ.
සෙක්(90) = 1/කොස්(90) = 1/0 = අනන්තය වේ.
කොට්(90) = 1/ටෑන්(90) = 1/අනන්තය = 0 වේ.

දැන් බලමු අංශක 180 කෝණය. මෙවිට, බද්ධ පාදය හා අරය සමපාත වේ. අරය යනු හැමවිටම ධන අගයකි (ඍණ අගයක් සහිත අරයක් වෘත්තයක තිබිය නොහැකියිනෙ). එහෙත් දැන් බද්ධ පාදය ගැන එසේ සිතිය නොහැකියි. බද්ධ පාදය දැන් තිබෙන්නේ x අක්ෂය මත වුවත්, එය තිබෙන්නේ ඍණ කොටසේය. ඒ කියන්නේ බද්ධ පාදයේ අගය ඍණ වේ. තවද, සම්මුඛ පාදය ශූන්‍ය වේ.



සයින්(180) = 0/r = 0 වේ.
කොස්(180) = -r/r = -1 වේ.
ටෑන්(180) = 0/-r = 0 වේ.

කොසෙක්(180) = 1/0 = අනන්තය වේ.
සෙක්(180) = 1/-1 = -1 වේ.
කොට්(180) = 1/0 = අනන්තය වේ.

අංශක 270 කෝණය බලමු. මෙවිට සම්මුඛ පාදය හා අරය සමපාත වී ඇත. එහෙත් සම්මුඛ පාදය පිහිටන්නේ y අක්ෂයේ ඍණ දිශාවේ බැවින් සම්මුඛ පාදයේ අගය ඍණ ලෙස සැලකිය යුතුය. බද්ධ පාදය 0 වේ.




සයින්(270) = -r/r = -1 වේ.
කොස්(270) = 0/r = 0 වේ.
ටෑන්(270) = -r/0 = ඍණ අනන්තය වේ.

කොසෙක්(270) = 1/-1 = -1 වේ.
සෙක්(270) = 1/0 = අනන්තය වේ.
කොට්(270) = 1/ඍණ අනන්තය = 0 වේ.

අංශක 360 කෝණය ගැන අමුතුවෙන් සලකා බැලීමට දෙයක් නැත. ඊට හේතුව අංශක 360 යනු අංශක 0 ම තමයි. එනම් යම් අංශුවක් අංශක 0 සිටින විටත් අංශක 360හි සිටින විටත්, එම අවස්ථා දෙක එකිනෙකට සමපාතව පවතිනවා. එනිසා අංශක 0දී සලකා බැලූ කාරණා සියල්ල මීට අදාල වන අතර, අංශක 0දී ලැබුණු අගයන්මයි අංශක 360 සඳහාත් පවතින්නේ.

දැන් ඉහත ප්‍රතිඵල සියල්ල පහත ආකාරයට වගුවක සාරාංශගත කළ හැකිය.



0o 90o 180o 270o 360o
sin
0
1
0
-1
0
cos
1
0
-1
0
1
tan
0
infinity
0
-infinity
0
csc
infinity
1
infinity
-1
infinity
sec
1
infinity
-1
infinity
1
cot
infinity
0
infinity
0
infinity

30o, 45o, 60o කෝණ

මෙම කෝණ සඳහා ත්‍රිකෝණමිතික අනුපාත අගයන් සරල ජ්‍යාමිතිය යොදාගෙන සෙවිය හැකියි. පළමුවෙන්ම අංශක 45 කෝණය බලමු. ඒ සඳහා පහත රූපය සලකන්න.



මෙහි B කෝණය ගමු. මෙම ත්‍රිකෝණය සඳහා පයිතගරස් ප්‍රමේයය දැමූ විට, BC2 = AB2+AC2 වේ. එහෙත් AB = AC ද වේ (සමද්විපාද ත්‍රිකෝණයේ සමාන පාද දෙක). එවිට, BC2 = AC2 + AC2 = 2AC2 වේ. තවද, BC2 = AB2 + AB2 = 2AB2 ලෙසද එය ලිවිය හැකියි. ඒ අනුව 45 කෝණය සඳහා පහත ආකාරයට අනුපාත ගණනය කරමු.




 
අංශක 30 හා 60 කෝණ සඳහා පහත රූපය සලකමු. මුලින්ම ABC නම් ත්‍රිකෝණය සලකන්න. එහි අංශක 30 ක හා 60 ක කෝණ ඇත. දැන් A ශීර්ෂයේ සිට BC පාදය තෙක් AD නම් රේඛාවක් නිර්මාණය කරන්න AC දිගට AD සමාන වන පරිදි. මෙම AD දිග a ලෙසද ගමු. එවිට ACD ත්‍රිකෝණය ඉබේම සමපාද ත්‍රිකෝණයක් බවට පත් වේ මොකද කෝණ 3ම සමාන නිසා (හෙවත් පාද 3ම සමාන නිසා). මෙවිට ADB කෝණය අංශක 120ක් වේ (180 – 60 = 120 නිසා). දැනටමත් B කෝණය (හෙවත් ABC කෝණය) 30 නිසා, ඉබේම BAD කෝණයත් අංශක 30ක් බවට පත් වේ. ඒ කියන්නේ ADB ත්‍රිකෝණය සමද්විපාද ත්‍රිකෝණයකි. එහි BD පාදය හා AD පාදය සමානය. එනිසා BD = a වේ. (AC = CD = AD = BD = a වේ.) එවිට, BC = 2a = 2AC වේ. තවද, BC2 = AC2+AB2 → (2a)2 = a2 + AB2 → AB2 = 4a2 – a2 = 3a2 වේ.



දැන් අපට හැකියි මෙම දත්ත ඔස්සේ අනුපාත සියල්ල සොයන්න.


 
ඉහත ගණනය කිරීම් බලන විට, සයින්(30) = කොස්(60) හා සයින්(60) = කොස්(30) බව පේනවා නේද? මූලික අනුපාත 3න් අනෙක් අනුපාත 3හි අගයනුත් සෙවිය හැකියිනෙ. මේ සියලු දත්ත පහත වගුවේ සාරාංශගත කර ඇත. අංශක 0, 30, 45, 60, 90, 180, 270 කෝණවල සයින්, කොස්, ටෑන් අගයන් මතක තබා ගැනීමට වටිනවා. (trigonometry ...)



30o 45o 60o
sin
1/2
1/2
3/2
cos
3/2
1/√2
1/2
tan
1/√3
1
3
csc
2
2
2/√3
sec
2/√3
2
2
cot
3
1
1/√3

Comments

Popular posts from this blog

දැනගත යුතු ඉංග්‍රිසි වචන -1

ඉංග්‍රිසි බස ඉගැනීමේදී වචන කොපමණ උගත යුතුද, එම වචන මොනවාදැයි බොහෝ දෙනෙකුට මතුවන ගැටලුවක් වන අතර, බොහෝ දෙනා ඊට විවිධ පිලිතුරුද සපයා ඇත. මේ ගැන හොඳින් පරීක්ෂණය කර ඇමරිකානු ආයතනයක් විසින් වචන 5000ක ලැයිස්තුවක් ඉදිරිපත් කර ඇත. එම ලැයිස්තුව මා කෙටස් දෙකකට (දිගු වැඩි නිසා) සිංහල තේරුම්ද සහිතව ඉදිරිපත් කර ඇත. (මේවා සැකසුවත් සෝදුපත් බලා නැති නිසා සුලු සුලු දෝෂ සමහරවිට තිබිය හැකිය). පහත ලැයිස්තුවේ වචන 2500ක් ඇත.    Word    තේරුම        be    ඉන්නවා    and    හා    of    ගේ    in    තුල    to    ට    have    තියෙනවා    to    ට    it    ඒක, ඌ    I    මම    that    ... කියලා, ඒ/අර, ඒක/අරක    for    සඳහා    you    ඔබ, ඔබලා    he ...

පුරවැසියා බාල්දු කරන අපහසය හා පොදු දේපල

මා දේශපාලනය හා නීතිය දැන ඉගෙන ගත් පලමු දවසේ සිටම ඉතා පිලිකුල් කල දෙයක් නම්, ඒ ලංකාවේ අධිකරණ අපහස නීතිය ලෙස අවභාවිතයේ පවතින තත්වයයි. පෞද්ගලිකව 2006 දී පමන මා හදාරමින් සිටි නීතිවේදි උපාධිය පවා අත් හළ එක් ප්‍රධාන සාධකයක් වූයේ ලංකාවේ නීතිය ගැන ඇති වූ දැඩි කලකිරීමයි. හැකි සෑම අවස්ථාවකදීම මා විවිධ ලිපි හා සංවාද හරහා එම තත්වය නිර්දය ලෙස විවේචනය කර තිබේ. රනිල්ව රිමාන්ඩ් කිරීම සම්බන්දයෙන් ක්‍රියාත්මක වූ නීති කෘත්‍ය හා අධිකරන අපහසය ගැන නැවත සැරයක් කරලියට පැමින තිබේ. නූතන මිනිස් සමාජය හා දියුනුව සලකා බලන විට, කිසිම පුද්ගලයකුට හෝ ආයතනයකට පූජනීය ස්ථානයක් ලබා නොදිය යුතුය. පූජනීයත්වය වෙනුවට පෞරුෂත්වය ආදේශ විය යුතුය. න්‍යායාත්මකවත් ප්‍රායෝගිකවත් ඒවා පූජනීය නොවේ.  තත් කාරනයට ඍජුව අදාල නොවුනත්, අප දැන්වත් විනිසුරුවරුන් "ස්වාමිනි" යන නාමයෙන් ඇමතීම තහනම් කල යුතුය. එය ඉපැරනි වැඩවසම් වචනයකි. හැම මගුලටම රිමාන්ඩ් කිරීමද නතර කල යුතුය. අදාල උසාවි දිනයේදී ඉදිරිපත් නොවන විටක, ඊට සාධාරන හේතු නැතිනම්, අන්න එය අධිකරන අපහසයක් ලෙස සලකා රිමාන්ඩ් නොව කෙලින්ම බන්ධනාගාර ගත කිරීමක් කලද කමක් නැත. ආගමික සංස්ථා පවා ...

මෝහනය / mohanaya (hypnosis) - 1

මෝහනය (mohanaya - Hypnosis) ගැන සිංහල බසින් ලියවී නොමැති අතර, එය ගැන උනන්දුවක් දක්වන අයට පහසුවෙනුත් නිවැරදිවත් ඉගෙන එය වගකීම් සහගතව භාවිතා කිරීමට හැකිවන පරිදි එම විෂය පිළිබඳ ඉතා සවිස්තරාත්මකව මෙම පොතෙන් ඉදිරිපත් කිරීම අරමුණ වේ. එම පොතේ කරුණු කුඩා කොටස් වශයෙන් මෙම බ්ලොග් එකෙහි පළ කිරීම සිදු වේ. හැඳින්වීම දියුණු යැයි සම්මත බටහිර සමාජයෙත් “ මෝහනය ” ගැන තවමත් උගත් නූගත් බොහෝ දෙනා අතර පවතින්නේද වැරදි අවබෝධයක් වන අතර, එම තත්වය ශ්‍රී ලංකාව තුළ ඊටත් වඩා බරපතල ලෙස දක්නට ලැබෙනවා. මේ සෑම සමාජයකම මෝහනය ගැන යම් හෝ දැනුමක් ඔවුන් බොහෝ විට ලබා ගෙන ඇත්තේ සමහර චිත්‍රපට හා ටෙලිනාට්‍යවල ඇති මෝහනය ඇතුළත් දර්ශනවලිනි. අවාසනාවකට චිත්‍රපට හා ටෙලිනාට්‍යවලින් පෙන්වන්නේ කිසිසේත් මෝහනයෙන් කළ නොහැකි එහෙත් එම කලාත්මක නිර්මාණයේ රස උත්පාදනය සඳහාම ඇති තවත් ප්‍රබන්ධයන් පමණි. ඔබම සිතා බලන්න මෝහනය පිළිබඳ ඔබ යම් දැනුමක් ලබා ඇතිනම්, ඊට කොතරම් චිත්‍රපට දර්ශන ආදිය බලපා ඇතිද කියා. සෑම ක්ෂේත්‍රයකම මෙන්ම මෝහනයද නිවැරදිව අවබෝධ කර හා නොකර එහි නියැළෙන අය සිටී. කෙනෙකු මෝහනය කිරීමට පැයක් වැනි කුඩා කාලයකින් වුවද අවශ්‍ය නම්...