Skip to main content

Dark clouds and silver linings

Today I heard about a grand wedding of an Indian tycoon (Ambani's son) from a friend of mine, and he showed me some videos of it too. He said famous and powerful people from around the world have been invited to it, and the cost of the event was going to be several Billions (of Indian Rupees or USD, I don't know). If you think about it, India is a country with a higher population of substandard living conditions. There are innocent and miserable children who are forced to work for a mere subsistence, being deprived of education, health facilities, and food and water. I remember a movie based on a true story in which Akshey Kumar was playing the leading role where he makes sanitary towels (pads) for poor women who could not afford it. In such a country, a single wedding event spends billions of money. What a crappy world we are living! You could imagine how much wealth this family has amassed. On the other, this "mental disease" of exorbitant spending must be highly we

අනුකලනය (integration) - 4


කොටස් වශයෙන් අනුකලනය කිරීම

සංකීර්ණ ස්වභාවයේ පවතින සමහර අනුකල ප්‍රකාශන විසඳීමේ තවත් උපක්‍රමයක් තමයි කොටස් වශයෙන් අනුකලනය කිරීම (integration by parts). ඒ සඳහා යොද ගන්නා පොදු සූත්‍රය පහත දැක්වේ.

u dv = uv - v du

ඇත්තටම ඉහත සරල අනුකල සමීකරණය සාදා ගෙන තිබෙන්නේ ගුණිතයක අවකලනය සොයන අවකලන සාම්‍යය ආශ්‍රයෙනි




















ශ්‍රිත දෙකක ගුණිතයක් අනුකලනය කරන විට හා පෙර උගත් ආදේශන රීතියද යෙදිය නොහැකි අවස්ථාවකදී මෙම රීතිය යෙදිය හැකිදැයි බැලිය යුතුය. මෙම රීතිය යෙදෙන අයුරු උදාහරණ ආශ්‍රයෙන්ම බලමු.

4xe5x dx යන්න සුලු කරන්න. මෙය ඍජුවම විසඳීමට සරල අනුකල සාම්‍යයක් නැති බව පේනවා මොකද ශ්‍රිතවල ගුණිතයක් අනුකලනය කිරීමට සාම්‍යයක් නැති නිසා. මීට ආදේශන රීතියද යෙදිය නොහැකියි. ඊට හේතුව 5x = u ලෙස සැලකූ විට, එහි අවකලනය 5 වේ. එහෙත් ගුණිතයේ තිබෙන්නේ 4x වේ. එනම් වැඩිපුර x විචල්‍ය පදයක් ඇත. වෙනස පවතින්නේ නියත පද ගුණිතයක් නම් (එනම් x වෙනුවට තිබෙන්නේ 4x ආදී ලෙස නම්) එවිටද ආදේශන රීතිය යෙදිය හැකි වුවත්, මෙහි වෙනස පවතින්නේ විචල්‍ය පද ගුණිතයකිනි. ඉතිං දැන් බලමු මීට කොටස් වශයෙන් අනුකලනය කිරීමේ උපක්‍රමය යෙදිය හැකිද කියා.

ප්‍රකාශනයේ ඉදිරියෙන්ම තිබෙන 4 අනුකලය ඉදිරියට ගෙන ආ හැකි නිසා, එම නියත ගුණිත පදය සලකන්න එපා. මෙම රීතිය යෙදීමේදී කල්පනා කළ යුතු ක්‍රමය මෙයයි. u dv ලෙස දී ඇති ගුණිත ප්‍රකාශය සකස් කළ හැකිදැයි බැලිය යුතුය. ඒ සඳහා පළමුවෙන්ම කරන්නට තිබෙන්නේ ගුණිතයේ යම් කොටසක් සඳහා u ආදේශ කිරීමයි. එවිට ප්‍රකාශයේ ඉතිරි කොටස ඉබේම dv බවට පත් වේ.

දැන් මෙම උදාහරණයට පහත දැක්වෙන ආදේශ කිරීම් කරමු.

x = u
 
එවිට ඉබේම, e5x dx = dv වේ.

ඉහත ආදේශනය සිදු කළ පසු, හැමවිටම u හි අවකලනයත් dv හි අනුකලනයත් සෙවිය යුතුය (සෑමවිටම මෙම ගණනය කිරීම් දෙක කිරීමට සිදු වේ. මෙම සුලු කිරීම් දෙක ගැටලුවක් නැතිව සිදු කළ හැකි නම්, බොහෝවිට කොටස් වශයෙන් අනුකලනය කිරීමේ උපක්‍රමය සාර්ථකව යෙදිය හැකි බව නිගමනය කළ හැකියි). u අවකලනය කිරීමෙන් u හා මුල් ("ඔරිජිනල්") ගුණිත ප්‍රකාශයේ ඇති ස්වායත්ත විචල්‍යය වන x අතර සම්බන්ධතාවක් ලබා ගැනේ (එනම් du හා dx අතර සම්බන්ධතාවක්). dv අනුකලනය කිරීමෙන් ලැබෙන්නේ v . ඒ අනුව,

du/dx = dx/dx = 1 → du = 1.dx = dx
v = dv = e5x dx = e5x/5

ඉහත අනුකලයේදී ලැබෙන නියත පදය (c) දැනට අමතක කරමු. ඉදිරියටත් අනුකලනය සිදු කිරීමට තිබෙන බැවින්, ඒවායෙන්ද නියත පද බිහිවෙන බැවින්, අපට අවසානයේ ලැබෙන පිළිතුරට එක් නියත පදයක් එකතු කළ හැකියි.

දැන් u dv = uv - v du යන සූත්‍රයට ඉහත සොයා ගත් කොටස් ආදේශ කරමු. 4 යන නියත ගුණිතයද තිබෙන බව වටහ ගන්න.










 
තවත් උදාහරණයක් බලමු. (2s + 5)sin(s) ds සුලු කරන්න. 2s + 5 යන්න u ලෙස සලකමු. එවිට,

u = 2s + 5
du/ds = 2 → du = 2 ds

dv = sin(s) ds
dv = sin(s) ds → v = -cos(s)

දැන් සූත්‍රයට ඉහත අගයන් ආදේශ කරමු. එවිට,

(2s + 5)sin(s) ds = (2s+5)(-cos(s)) - -cos(s)(2ds)
= -(2s+5)cos(s) + 2[sin(s)] = -(2s + 5)cos(s) + 2sin(s) + c

තවත් උදාහරණයක් ලෙස n2cos(5n) dn සුලු කරන්න. u = n2 ලෙස ගමු. එවිට dv = cos(5n) dn බවට පත් වේ. එවිට,

du/dn = 2n → du = 2n dn
v = dv = cos(5n) dn = sin(5n)/5

n2cos(5n) dn = (n2)(sin(5n)/5) - (sin(5n)/5)(2n dn)
= (1/5)n2sin(5n) – (2/5) nsin(5n) dn - (1)

ඉහත ආකාරයට නිවැරදිව පියවරෙන් පියවර සුලු කරගෙන යන විට, අපට එකවර අවසන් පිළිතුරක් මෙහිදී ලැබුණේ නැහැ නේද? nsin(5n) dn ලෙස තවත් අනුකල ප්‍රකාශයක් එහි තිබේ. එම කොටසත් සුලු කරන තුරු අවසන් පිළිතුර ලැබුණා සේ සලකන්නට බැහැ. එනිසා මෙම නව අනුකල ප්‍රකාශය විසඳීමට සිදු වෙනවා එය වෙනමම ප්‍රකාශයක් සේ සලකා. එම නව අනුකල ප්‍රකාශය දෙස බැලූ විට පෙනී යන්නේ එයද ශ්‍රිත දෙකක ගුණිතයක් සේ පවතින බවයි. ඊට අමතරව, එය විසඳීමට හැකි වන්නේ නැවතත් කොටස් වශයෙන් අනුකලනය කිරීමෙන් බව පෙනේ. ඒ අනුව එම කොටස වෙනමම දැන් සුලු කරමු.

u = n → du/dn = 1 → du = dn
dv = sin(5n) dn → v = sin(5n) dn = -cos(5n)/5

nsin(5n) dn = (n)(-cos(5n)/5) - (-cos(5n)/5)(dn)
= (-1/5)ncos(5n) + (1/25)sin(5n) + c'

දැන් මෙම විසඳුම ඉහත (1) ප්‍රකාශයට ආදේශ කරන්න.

n2cos(5n) dn = (1/5)n2sin(5n) – (2/5) nsin(5n) dn
= (1/5)n2sin(5n) – (2/5) [(-1/5)ncos(5n) + (1/25)sin(5n) + c']
(1/5)n2sin(5n) + ( 2/25)ncos(5n) - ( 2/125)sin(5n) + c

ඉහත උදාහරණය අනුව පෙනී යන්නේ සමහර ප්‍රකාශන විසඳීමට කිහිප පාරක්ම අනුකලන සෙවීමට සිදු වන බවයි. එනම් මුල් ප්‍රකාශය විසඳාගෙන යන විට එම ප්‍රතිපලය තුළ තවත් අනුකල ප්‍රකාශයක් නිර්මාණය වේ. එහෙත් මෙම නව අනුකල ප්‍රකාශය හැමවිටම ඊට පෙර අනුකල ප්‍රකාශයට වඩා සරලයි. අවසානයේදී කිසිදු අනුකල ප්‍රකාශයක් හමු නොවන තුරු සුලු කිරීම දිගටම කරගෙන යා යුතුය.

තවත් උදාහරණයක් ලෙස ln(x) dx විසඳමු. මෙය විසඳීමට ඇත්තටම අනුකල සාම්‍යයක් ඇත. මීට අමතරව කොටස් වශයෙන් අනුකලනය කිරීමේ උපක්‍රමයෙන්ද මෙය විසඳිය හැකිය (ඇත්තටම අනුකල සාම්‍යය සාධනය කරන්නේද මෙමඟිනි). ln(x) = u ලෙස සලකමු. ඒ අනුව,

u = ln(x) → du/dx = (1/x) → du = (1/x) dx
dv = dx → v = dv = dx = x

ln(x) dx = (ln(x))(x) - x ((1/x)dx)
= xln(x) - 1 dx = xln(x) – x + c

මේ ආකාරයට තවත් උදාහරණ රාශියක් සුලු කර මෙම ක්‍රමයද හුරු විය යුතුයි.