Skip to main content

Posts

Showing posts from March, 2016

තෙරුවන් සරන ගිය මාලිමාව

තවත් අපූරු ඡන්දයක් නිම විය. එය කරුණු රැසක් නිසා අපූර්ව වේ. සමහරු කියන පරිදි රදලයන්ගේ දේශපාලනයේ අවසානයක් (තාවකාලිකව හෝ) ඉන් සිදු විය. වැඩ කරන ජනයාගේ, නිර්ධන පංතියේ නායකයෙකු හා පක්ෂයක් බලයට පත් වීමද සුවිශේෂී වේ. රටේ මෙතෙක් සිදු වූ සකල විධ අපරාධ, දූෂන, භීෂන සොයා දඩුවම් කරනවා යැයි සමස්ථ රටවැසියා විශ්වාස කරන පාලනයක් ඇති විය. තවද, බහුතර කැමැත්ත නැති (එනම් 43%ක කැමැත්ත ඇති) ජනපතිවරයකු පත් විය. ජවිපෙ නායකයෙක් "තෙරුවන් සරණයි" කියා පැවසීමත් පුදුමය. මේ සියල්ල ලංකා ඉතිහාසයේ පලමු වරට සිදු වූ අපූරු දේශපාලන සංසිද්ධි වේ. මාද විවිධ හේතුන් මත අනුරට විරුද්ධව මෙවර තර්ක විතර්ක, සංවාද විවාද, හා "මඩ" යහමින් ගැසූ තත්වයක් මත වුවද, ඔහු දැන් රටේ ජනපති බැවින් ඔහුට පලමුව සුබ පතමි.  ඔහුට විරුද්ධව වැඩ කලත්, මා (කිසිදා) කිසිදු පක්ෂයකට හෝ පුද්ගලයකුට කඩේ ගියේද නැති අතර අඩුම ගණනේ මාගේ ඡන්දය ප්‍රකාශ කිරීමටවත් ඡන්ද පොලට ගියෙ නැත (ජීවිතයේ පලමු වරට ඡන්ද වර්ජනයක). උපතේ සිටම වාමාංශික දේශපාලනය සක්‍රියව යෙදුනු පවුලක හැදී වැඩී, විප්ලවවාදි අදහස්වලින් මෙතෙක් කල් දක්වා සිටි මා පලමු වරට සාම්ප්‍රදායික (කන්සර්වටිව්...

අනුකලනය (Integration) - 8

විෂම අනුකලය විෂම අනුකලය (improper integral) යනු නිශ්චිත අනුකලයේදී මතු වන සුවිශේෂි තත්වයකි . සාමාන්‍යයෙන් නිශ්චිත අනුකල ප්‍රකාශයක් සුලු කර අවසන් වූවාට පසුව අපට යම් නිශ්චිත අගයක් ( හෙවත් නිශ්චිත වර්ගඵලයක් ) ලැබෙනවානෙ . එහෙත් යම් හේතු නිසා නිශ්චිත අනුකල ප්‍රකාශය සුලු කළ පසුත් අවසන් අගය නිශ්චිත නොවන අවස්ථා ඇත . විෂම අනුකලය යොදන්නට සිදු වන්නේ එබදු අවස්ථාලය . ප්‍රධාන ලෙස මෙවැනි අවස්ථා දෙකක් ඇත . ඔබ දැන් දන්නවා නිශ්චිත අනුකල ප්‍රකාශයක් සුලු කිරීමේදී පියවරවල් දෙකක් තිබෙනවා . පළමු පියවරේදී අනිශ්චිත අනුකල සුලු කිරීමකුයි සිදු වන්නේ ( දෙවැනි පියවරේදී නිශ්චිත පරාසයේ අගයන් දෙක ඊට ආදේශ කිරීම සිදු වෙනවා ). මෙම පළමු පියවරේදී ලැබෙන්නේද ශ්‍රිතයක්නෙ . ඉතිං අනුකලයේ දක්වා ඇති පරාසය තුළ , සමහර ශ්‍රිත අසන්තතික (discontinuous) විය හැකියි . පහත රූපය බලන්න . ඉහත රූපයේ දැක්වෙන්නේ අනුකලනයට භාජනය වන යම් ශ්‍රිතයක ප්‍රස්ථාරයකි . එහි x=2 වන විට ප්‍රස්ථාරය කැඩී / අසන්තතික වී ඇත . දැන් පෙන්වා ඇති පරිදි 2 යන අවස්ථාවත් ඇතුලත් වන පරිදි යම් x අගය පරාසයක වර්ගඵලය ( එනම් නිශ්චිත අනුකලය ) සොයන විට ගැටලුවක්...

අනුකලනය (Integration) - 7

නිශ්චිත අනුකලනය නිශ්චිත අනුකලනය (definite integral) දැන් ආකාර දෙකකින් පැහැදිලි කළ හැකියි මොකද අනුකලනය ආකාර දෙකකින් අර්ථ දක්වපු නිසා . මොන විදියෙන් අර්ථ දැක්වුවත් පැහැදිලි කළත් ඒ සියල්ලෙන්ම කියන්නේ එකම දේ බව මතක තබා ගන්න . අනිශ්චිත අනුකලන ප්‍රතිපලවල හැමවිටම යම් නියත පදයක් (c) ලැබුණා නේද ? එම අගය නිශ්චිතව නොදන්නා නිසානේ මුලු අනුකල ප්‍රකාශයම අවිනිශ්චිත වූයෙත් . නිශ්චිත අනුකලනය යනු මෙවැනි අවිනිශ්චිත නියත පදයක් නොමැති අනුකලන ප්‍රතිපලයකි . වර්ගඵලය ආශ්‍රයෙන් නිශ්චිත අනුකලනය යනු කුමක්දැයි දැන් බලමු . අවිනිශ්චිත අනුකලනයේදී ශ්‍රිතය x අක්ෂය සමග සාදන වර්ගඵලය නිශ්චිත නැහැනෙ . ඊට හේතුව x අගය පරාසය නිශ්චිත නැති වීමයි . එහෙත් අපට පුලුවන් x හි අගය පරාසය සීමා කරන්න හෙවත් නිශ්චිත කරන්න . අහවල් x අගයේ සිට අහවල් x අගය දක්වා පරාසය තුළ ශ්‍රිතයේ වර්ගඵලය ලෙස නිශ්චිත අනුකලනය අර්ථ දැක්විය හැකියි . මේ ගැන තව දුරටත් සොයා බලමු . නිශ්චිත අනුකලයේදී අගය පරාසය දැක්විය යුතු නිසා අනුකල සංඛේතයේ යටට හා උඩට වන්නට එම අගයන් දෙක දැක්වේ . උදාහරණයක් ලෙස x = 1 සිට x = 2 දක්වා පරාසය තුළ 2x ශ්‍රිතය x විෂයෙන් අන...